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Abstract

Vehicle tracking across multiple cameras can be difficult

for modern tracking systems. Given unlikely candidates and

faulty similarity estimation, data association struggles at

city-scale tracking. In order to avoid difficulties in a large

scenario, we keep the tracking procedure within a minimal

range. The benefit of this smaller scenario idea is two-fold.

On the one hand, ruling out most unlikely candidates de-

crease the possibility of mis-assignment. On the other hand,

the system can devote all its discriminative power on the

remaining local candidate pool. In fact, our tracking sys-

tem features two parts to keep the data association within

a small range, while at the same time increase the local-

ity awareness for smaller scenarios. First, multiple cues

including spatial-temporal information and camera topol-

ogy are leveraged to restrict the candidate selection. Sec-

ond, the appearance similarity estimation module is care-

fully tuned so that it focuses on the smaller local candidate

pool. Based on a minimal view for the large scenario, the

proposed system finished 5th place in the 2019 AI-City chal-

lenge for city-scale multi-camera vehicle tracking.

1. Introduction

City-scale multi-camera vehicle tracking [19] is a sub-

set of multi-target multi-camera tracking (MTMCT), which

focuses on tracking multiple targets across different cam-

eras [15]. However, given its vast coverage, huge candi-

date pool, and poor similarity estimation, city-scale vehicle

tracking needs a dedicated system for best performance.

Many researchers focus on human MTMCT since the

introduction of DukeMTMC dataset [15]. These tracking

systems usually adopt a tracking-by-detection [5] workflow.

However, human tracking systems are not ready for applica-

tion on city-scale vehicle tracking directly. In fact, vehicle

MTMCT differs from human counterpart in both candidate

pool size and similarity estimation accuracy.

First, city-scale vehicle tracking systems cover a vast

area. One scenario in the 2019 AI-City challenge [19] spans

more than 2 kilometers, whereas DukeMTMC dataset only

covers a university campus. Moreover, vehicle tracking sys-

tem contains many distractors, including parked cars. Un-

like humans who rarely stands at the same place for a pro-

longed period of time, these parked cars seldom move. In

the evaluation protocol, these parked cars are not included

either. Second, vehicles share similar appearance which is

fairly difficult to re-identify even for a human. Vehicles only

have a handful of types and the most common types share a

lot of visual similarities. To make matter worse, the appear-

ance of the same vehicle in different perspectives diverse

significantly.

In the proposed system, we tackle the problem through

minimal candidate selection and locality-aware similarity

estimation. On one hand, we rule out the unlikely can-

didates. We start by refining the region-of-interest (ROI)

in detection selection to rule out the parked cars. Then,

when associating tracklets into single-camera trajectories,

smoothness scores are used to rule out unlikely tracklet

pairs. After the completion of single camera trajectories, the

cross camera data association is first conducted on smaller

sub-scenarios covering a single intersection, then city-wide.

On the other hand, we increase the appearance discrimina-

tive power for smaller scenarios. The re-ID feature extractor

is still trained on a global dataset, but the similarity estima-

tion module in the vehicle MTMCT system is fine-tuned.

Since the appearance of vehicles is most similar within cam-

eras, we set a more acute threshold for single camera track-

ing, and a more robust threshold for cross camera tracking.

At last, data association is conducted within a smaller range

and a locality-aware similarity score.

We make the following contributions to city-scale vehi-

cle MTMCT in the proposed system.

• Candidate selection with various cues including ROI

refinement, spatial-temporal smoothness, and sub-

scene division.

• A locality-aware similarity estimation module, with

more acute parameter setting for the reduced candidate

pool.

• A high-performing system on the AI-City 2019 chal-

lenge city-scale vehicle MTMCT based on merely the

provided detection and training data.
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Figure 1: Output of the proposed vehicle MTMCT system. The green cab is successfully tracked across multiple cameras.

2. Related Work

Multi-object tracking (MOT) systems usually follow the

tracking-by-detection idea [5]. With the introduction of the

renowned MOT challenge datasets [6, 13], this area draws

attention from many researchers. Currently, most state-of-

the-art MOT systems [12, 21, 10] features a detection pro-

posal and selection part. In fact, the proposed DPM detec-

tion [2] provides noisy results. As for remedy, these top-

performing MOT trackers generate detection proposals by

themselves. For similarity estimation, MOT systems usu-

ally use Euclidean distance between person re-identification

(re-ID) [25] features. As for data association, either the on-

line methods or the offline methods are adopted. For online

methods, only information form current or past time slots

can be used. These online methods usually greedily asso-

ciate detection in the current time slot into tracklets [10].

For offline methods, batch optimization methods are usually

adopted since they can benefit from the information in fu-

ture time slots. For example, in [12, 21], researchers choose

correlation clustering, and in [18], researchers formulate

the problem as lifted multicut.

Cross-camera tracking is also a vital part of MTMCT.

Most researchers associate cross-camera identities based on

single-camera trajectories [15, 16, 24]. Person re-ID meth-

ods also adopted in top-performing trackers for best perfor-

mance [16, 24]. As for data association, in [23], the au-

thors choose the online method with track-hypothesis trees.

In [15, 16, 24], the author adopts the offline method through

correlation clustering.

Vehicle tracking is an emerging aspect of MTMCT.

Since the 2018 AI-City challenge [14], many researchers

focus on this new problem. Most of the systems follow

the tracking-by-detection method [20, 22, 3, 1]. Specifi-

cally, in [20], Tang et al. use multiple cues including trajec-

tory smoothness, velocity change and temporal information

for single-camera tracking. For cross-camera tracking, the

researchers seek deep learning features, license plate fea-

tures, and detected car type. All these efforts combined re-

sults in the top-performing result in last year AI-City chal-

lenge winner for tracking. In [22], researchers propose an

adaptive-feature-learning technique for vehicle re-ID fea-

ture learning. In [3], Feng et al. use trajectories distance

to aid the cross camera tracking procedure.

3. Method

3.1. System Overview

In the proposed system, short but reliable tracklets are

first computed from detections. Next, these tracklets are

linked into single-camera trajectories. Then, in each sub-

scene covering a single corner or crossing, trajectories are
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Figure 2: Our ROI refinement for detection selection.

merged into cross-camera identities. At last, the cross-

camera identities in each sub-scene are associated together.

Problem formulation. We follow the same formula-

tion as in [15]. In each of the four afore-mentioned asso-

ciation steps, candidates are formulated as nodes/vertices

V , and the correlation weights from re-ID features are de-

noted as edges E. Given candidates and pair-wise correla-

tion weights, a graph G = (V,E) is constructed.
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(a) Possible candidate pair based on smoothness.

(b) Impossible candidate pair based on smoothness.

Figure 3: Smoothness score for tracklets pair selection.

For a pair of nodes i, j ∈ V , xi,j ∈ {−1, 1} is a indicator

of whether they are of the same identity. The optimization

problem is formulated as follows,

max
xi,j

∑

∀i,j∈V,wi,j∈E

xi,jwi,j . (1)

Eq. 1 maximizes intra-group similarity, while at the same

time minimizes inter-group similarity.

Person detection. We adopt the single shot multibox

detector [8] provided in the AI-City development kit.

Similarity estimation. Given a pair of CNN features fi

and fj , their appearance similarity score is computed as,

wi,j =
thres − d (fi,fj)

norm
, (2)

where d(·) is the Euclidean distance metric. thres and

norm are hyper parameters we choose specifically to best

match the smaller scenario.

Data association. We choose correlation clustering

methods in our offline tracking system. Candidates are as-

sociated according to their pair-wise similarities as com-

puted in Eq. 2.

3.2. Minimal Candidate Selection

The idea of minimal candidate selection is applied

throughout the tracking procedure. First, we refine the ROI

in detection selection. Next, when associating single cam-

era trajectories, smoothness scores are used to rule out un-

likely pairs. After that, the cross camera data association is

first conducted on smaller sub-scenarios and then city-wide.

ROI refinement. As shown in Fig. 2, the ROI provided

by AI-City challenge contains parked cars. These cars do

not move for the whole video duration. Besides, the eval-

uation protocol does not contain these parked cars. Since

these parked only increase candidate pool size and are not

Figure 4: Overview of scenario S02. S02 has only one in-

tersection. Thus, it only contains one sub-scene.

included in the evaluation protocol, they can be safely re-

moved from the system without any loss. To do this, we

carefully design the ROI in every camera to best exclude

the parked cars as well as other false positive detections.

Smoothness score for trajectories association. As in-

troduced in Section 3.1, candidates are associated according

to their pair-wise similarities. When associating tracklets

into single-camera trajectories, smoothness of the tracklets

is leveraged to rule out the unlikely pairs. First, the car in

the camera plane is projected into the map plane according

to the provided homography matrix. After projection, the

car bounding box position in the camera plane will be de-

noted by the longitude and latitude of the car. For better

readability, we use the radius of the earth to further project

the longitude and latitude of the car into an X-Y coordinate

system. The origin point of that X-Y coordinate system is

set to the center of each scenario. In the following parts,

the car position refers to its position on the map. Then, for

every pair of tracklets, the smoothness of their car position

is calculated as the average difference between the detected

position and predicted position. Polynomial curve fitting is

employed to estimate the predicted position. If the aver-

age position difference is larger than 2 meters, this pair is

marked as impossible.

Sub-scene division. In the 2019 AI-City challenge, two

scenarios are used for testing. S02 (as shown in Fig. 4)

is a highway intersection featuring four cameras. S05, on

the other hand, contains 5 intersections and 19 cameras.

Directly considering all the cameras in S05 within a 2-

kilometer-spanning area can include many unlikely can-

didate pairs. To avoid this, we divide S05 into 6 sub-

scenarios. Each of the 6 sub-scenarios contains cameras

near an intersection, and there are at least 100-meter-long
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Figure 5: Overview of the city-scale scenario S05. S05 spans more than 2 kilometers and is divided into multiple sub-scenario

covering only one corner/crossing.

gaps in between these sub-scenarios. S02 is considered

the only sub-scene in itself. When connecting the single-

camera trajectories, we first consider the sub-scenarios.

Then, the cross camera identities in each sub-scenarios are

linked together.

3.3. Locality Aware Similarity Estimation

The similarity estimation module in the proposed only

base on the re-ID features. With carefully design and tun-

ing, it provides reliable performance for the refined candi-

date pool in both single camera tracking and cross camera

tracking.

Vehicle re-ID features. We use only the provided re-

ID dataset in AI-City (track-2) to train an appearance fea-

ture extractor. The base network is DenseNet-121 [4]. The

last fully connected layer in the DenseNet is changed into a

1024-dimensional feature extractor layer. The stride in the

last pooling layer is changed into 1 (identity layer). The

whole network is trained with a cross-entropy/triplet com-

bined loss. Then, we train another two models with either

soft margin triplet loss or color jitters for model ensemble.

After training three models, their features are first normal-

ized, then concatenated, at last normalized again. The final

feature is a 3072-dimensional normalized feature. The per-

formance of this feature is investigated in Section 4.

Locality-aware threshold tuning. As shown in Fig. 6,

the Euclidean distances between positive pairs are smaller,

and the distances between negative pairs are larger. The av-

erage Euclidean distance between positive pairs is denoted

as µp, and the average Euclidean distance between negative

pairs is denoted as µn. In equation 2, the normalize param-

eter norm =
µn−µp

2
is set as half of the distance between

µp and µn.

The threshold, however, requires more tuning. First,

we have a key finding. As shown in Fig. 6, positive

pair distances are closer between within-camera pairs than

cross-camera pairs. This is because the vehicle appearance

changes continuously and subtly inside a camera. However,

it tends to change more drastically cross cameras. In fact,

the lighting condition, viewing angle, scale, and resolution

all changes smoothly inside a camera, but more strongly

across cameras.

Based on this finding, we set the threshold smaller so it

is more sensitive to the within camera appearance variance.

Traditionally, the threshold norm =
µn+µp

2
is set as the

median value between µp and µn for cross-camera pairs,

for both single-camera tracking and cross-camera tracking.

In the proposed system, threshold norm for single-camera

tracking and cross-camera tracking is set separately.

For single-camera tracking, the threshold thres is set ac-

cording to the average distance between single-camera data

pairs. In fact, it is tuned to 0.68 for single camera track-

ing, which is the median value between µp and µn for

within-camera pairs. For cross-camera tracking, the thresh-
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Figure 6: Euclidean distance between positive pairs and negative pairs. The pairwise distance between within-camera pos-

itive pairs are significantly smaller than that of cross-camera pairs. This is mainly due to small intra-camera lighting and

perspective variation. In the proposed system, the threshold for positive/negative pair is also adjusted for single camera

tracking.

Model mAP (%) rank-1 (%)

baseline 28.6 70.2

soft margin 29.1 70.5

color jitters 30.3 72.1

ensemble 31.2 72.5

Table 1: Vehicle re-ID performance on VeRi dataset.

old thres is set according to the average distance between

cross-camera data pairs, which is the same as traditional set-

tings. This results in a larger threshold at 0.73.

4. Experiment

4.1. Dataset and Evaluation Protocol

Dataset. The AI-City 2019 challenge MTMCT (track-1)

dataset contains videos for urban intersections and highway.

It contains a total of 40 cameras, in 5 scenarios. Scenarios

S01, S03, S04 are used for training. S02 and S05 are used

for testing. Videos are 960p or better, and most have been

captured at 10 frames per second. There are 195.03 min-

utes of videos in total. The combined length of the training

videos is 58.43 minutes, and the testing videos 136.60 min-

utes. In the MTMCT dataset, only cross-camera identities

(vehicles appeared in multiple cameras) are labeled.

For re-ID feature training, the re-ID dataset in AI-City

2019 challenge (track-2) is used. There are 36935 images

from 333 vehicles in the training set. For re-ID feature test-

ing, we use the query/gallery in the VeRi dataset [9, 7].

Evaluation protocol. For MTMCT, multi-camera track-

ing (MCT) IDF-1 score are considered following [15]. In

Name IDF1 IDP IDR

0.67 nms 0.6519 0.6300 0.6770

Table 2: Detailed results on the test set.

fact, the AI-City MTMCT dataset only consider MCT per-

formance. For re-ID, we use mean average precision (mAP)

and rank-1 precision following [25].

4.2. Implementation Details

For MTMCT, tracklets size is set to 10 frames. Next,

a 30-frame-long sliding window is used to merge tracklets

into trajectories. Following that, a 500-frame-long window

is used in each sub-scene to create cross-camera identities.

At last, for S05, all the cross-camera identities are merged

together with a 2,400-frame-long window.

Note that the detection bounding boxes are enlarged by

40 pixels in both height and width, following the dataset

settings. Then, the re-ID feature is extracted based on the

enlarged bounding boxes. Detection bounding boxes with

area smaller 1,000 pixels square are excluded from the sys-

tem.

Moreover, after the formulation of the trajectories, we

remove some overlapped bounding boxes through non-

maximum-suppression (NMS). The NMS in our system fol-

lows two rules. First, the bounding box closer to the camera

is kept. Second, only the bounding boxes with more than

2/3 area overlapped are removed.

Besides, the projection from the camera plane onto the

map plane is carried out based on the provided homography

matrix. These homography matrices are generated based on
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the longitude and latitude, plus the position in the camera

plane of the key point.

For re-ID feature training, the batch size is set to 64. As

for triplet settings, images per identity is set to 4, and the

margin is set to 0.3. Label smooth techniques [17] is also

applied. The input size is set to 256× 256. Following [11],

we warm up the model linearly for 10 epochs, and train for

120 epochs. The learning rate is set to 0.01, and decays

0.1× after the 30, 60, 80 epochs.

All the experiments are conducted on a server with 6-

core Intel Xeon processor, two NVIDIA 1080ti GPUs.

4.3. Evaluation

Vehicle re-ID. The performance of the proposed re-ID

feature is shown in Table 1. All the models are trained on

the re-ID dataset of the AI-City challenge (track-2). The

baseline model with cross-entropy (with label smooth) and

triplet loss perform decently on the VeRi dataset. With the

inclusion of soft margin and color jitters, the performance

gradually increases. At last, the 3072-dimensional feature

in the ensemble model provides the best performance on the

VeRi dataset.

Rank Team ID IDF Score

1 21 0.7059

2 49 0.6865

3 12 0.6653

4 53 0.6644

5 97 (Ours) 0.6519

6 59 0.5987

7 36 0.4924

8 107 0.4504

9 104 0.3369

10 52 0.2850

Table 3: Leader board on AI-City challenge for city-scale

multi-camera vehicle tracking.

Vehicle MTMCT. For vehicle MTMCT, we only have

access to the online testing set, which has a maximum sub-

mission count of 20. We report the top performing MTMCT

results of the proposed system in Table 2 and Table 3. Over-

all, the system achieved 5th place in the 2019 AI-City vehi-

cle MTMCT challenge.

5. Conclusion

In this paper, multiple cues including ROI refinement,

trajectory smoothness, and sub-scene division are employed

to minimize the candidate pool for the city-scale vehicle

MTMCT system. To best fit the reduced candidate pool,

a more acute threshold is set in the similarity estimation

module. Based on only the provided detection/training data,

we achieved 5th performance in the 2019 AI-City MTMCT

challenge. In the future, we will continue to investigate the

application and usage of the vehicle trajectories on the map

plane.
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